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Abstract. The Landau–Lifshitz equation for a spin chain with an easy plane in the case of
spin non-flip is solved by the method of inverse scattering transform. To avoid complexity
caused by the Riemann surface of the usual spectral parameter, a particular parameterk is
introduced. After performing a gauge transformation corresponding to|k| → ∞, the resulting
Lax pair is independent of particular solutions in this limit. An inverse scattering transform is
then developed in terms ofk. A system of linear equations is derived in the reflectionless case.
An expression of the gauge transformation and hence expressions of multi-soliton solutions are
found explicitly by using the Binet–Cauchy formula. As an example, an explicit expression of
the 1-soliton is given in terms of elementary functions ofx and t .

1. Introduction

In the last 20 years, the Landau–Lifshitz (L–L) equation for a spin chain with an easy plane
has attracted much attention [1]. There exist localized permanent shape solutions for it, as
mentioned in [2] and evident also from [3] in the appropriate limit. However, the equation
is hard to solve exactly [4]. It is impossible to find, as mentioned in [5], a general stationary
(i.e. depending onx − vt) solution. Solutions of this type given in previous works [6, 7]
do not satisfy the equation even in the approximation of first-order anisotropy.

Hirota [8] has shown the possibility of the existence of many soliton solutions for
the general case with two anisotropies, but explicit soliton solutions for the L–L equation
with an easy plane were not constructed [9]. Another attempt [10] was made to reduce
the equation to an approximate equation, but the solution which was found could not be
considered as an approximate solution of the L–L equation with an easy plane, since it does
not satisfy the equation in the approximation of first-order anisotropy.

It was attempted to solve the equation by the inverse scattering transform [11, 12].
However, in addition to the complexity due to the Riemann surface, required by the double-
valued function of the usual spectral parameter, the equation has no common property in that
the Lax pairs are independent of the particular solutions of the equations in some limiting
values of the spectral parameters, just as for most nonlinear equations that have been solved
by the inverse scattering transform. This means that one needs an additional idea to face
the induced difficulty, but at present suggestions are not forthcoming. Boroviket al [11, 12]
attempted to transform the equation to a new one which had the above-mentioned property
by means of an appropriate qauge transformation, such as the L–L equation of an isotropic
spin chain, but was unsuccessful.

Recently, the exact soliton solutions to the equation with spin non-flip found by means
of the method of Darboux transformation matrix, were reported [13–15]. However, with this
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method, it is impossible to include the contribution due to the continuous spectrum of the
spectral parameter. If one considers perturbation theory for the equation with corrections,
such as that with an applied field which is more important in practice, a general theory with
terms of the continuous spectrum as a starting point is necessary.

In this paper, an inverse scattering transform is developed for the L–L equation with an
easy plane in the case of spin non-flip. To avoid the double-valued function of the usual
spectral parameter, one may introduce an affine parameter, as in the nonlinear Schrödinger
(NLS) equation of normal dispersion with non-vanishing boundary values [16]. However,
it is unsuitable in the present case because of the lack of the above-mentioned common
property of the solved equations. To develop an inverse scattering transform one needs to
overcome this difficulty. It is necessary that a gauge transformation be introduced [17] and
chosen such that the resulting equation does have the above-mentioned common property.
By introducing a particular parameterk (see later equation (5)), first that the complexity
due to the Riemann surface in terms of the usual spectral parameter is avoided, and second
the gauge transformation is determined by the Lax equations corresponding to|k| → ∞.
Then for the resulting equation analyticities of the Jost solutions as functions ofk are
derived. An equation of the inverse scattering transform is then deduced. In the case of
no reflection, after determining the expression of the gauge transformation, expressions for
multi-soliton solutions of the equation with an easy plane are obtained explicitly by solving
the linear algebraic equations with the aid of the well known Binet–Cauchy formula [18].
This method is more effectual than that of the Darboux transformation matrix [13, 14] and
the asymptotic behaviour of theN -soliton solution in the limit|t | → ∞ can be obtained
simply. The 1-soliton solution is found explicitly in terms of elementary functions ofx

and t . These are the same functions as those in the method of the Darboux transformation
matrix [13]. The present inverse scattering transform method includes the contributions due
to the continuous spectrum of the spectral parameter. It, therefore, provides a suitable basis
for developing a perturbation theory for the equation with corrections.

2. The L–L equation with an easy plane

The L–L equation for a spin chain with an easy plane is

St = S × Sxx + S × JS |S| = 1 (1)

where the diagonal matrixJ = diag(0,−16ρ2, 0), which characterizes the easy plane, the
31-plane. Hereρ is a positive constant and 16 is introduced for later convenience. In the
case of spin non-flip we assume that

S → S0 = (0, 0, 1) as |x| → ∞. (2)

The Lax pair of equation (1) is given by [3]

L = −iµS2σ2− iλ(S3σ3+ S1σ1) (3)

M = i2λ2S2σ2+ i2λµ(S3σ3+ S1σ1)− iλ(S1S2x − S2S1x)σ3

−iλ(S2S3x − S3S2x)σ1− iµ(S3S1x − S1S3x)σ2 (4)

where parametersµ andλ satisfyµ2 = λ2+4ρ2. If one of them is taken as an independent
parameter, the other is a double-valued function of it.

Note the fact that the parametersµ andλ cannot be simultaneously equal to zero; the
Lax pair given by (3) and (4) depends on the solutions of equation (1) in any limiting values
of the spectral parameter.
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In this paper, we introduce an auxiliary parameterk such that

µ = −2ρ
k + k−1

k − k−1
λ = −2ρ

2

k − k−1
. (5)

Then, in addition to avoiding the necessity of introducing the Riemann surface, the new Lax
pair obtained from the old one by an appropriate gauge transformation is indeed independent
of particular solutions of the L–L equations in the limit ofk tending to∞, although one
does not obtain a new equation.

3. A gauge transformation

The original Lax equations are

∂xF (k) = L(k)F (k) ∂tF (k) = M(k)F (k). (6)

We define a gauge transformation [17]

F(x, k) = K(x)F ′(x, k) (7)

whereK(x) is independent ofk, such that

∂xF
′(x, k) = L′(x, k)F ′(x, k) (8)

in which L′(x, k) has the property thatL′(x, k)→ 0, ask→∞.
One can find

Kx(x) = i2ρS2(x)σ2K(x) (9)

and then

K(x) = ei 1
2�(x)σ2 (10)

whereK(x) means a rotation around the 2-axis in the spin space and�(x) is real and
denotes a rotation angle around the 2-axis. We also obtain

L′(x, k) = −i(µ+ 2ρ)S ′2σ2− iλ(S ′3σ3+ S ′1σ1) (11)

and the prime denotes the rotated quantities. Since (2), the rotation does not affect the
asymptotic spin.

We now consider the new Lax equation (8) and neglect the prime. Its asymptotic
Jost solution is obviously e−iλxσ3. The Jost solutions of (8),(ψ̃(x, k)ψ(x, k)) and
(φ(x, k)φ̃(x, k)), is defined by the asymptotic conditions tending to e−iλxσ3 as x → ±∞.
For realk, (8) has two independent solutions with two components; as usual, one has for
example

φ(x, k) = a(k)ψ̃(x, k)+ b(k)ψ(x, k) (12)

wherea(k) andb(k) are independent ofx, and

a(k) = −iφ(x, k)Tσ2ψ(x, k) b(k) = −iψ̃(x, k)Tσ2φ(x, k). (13)

It is easily seen thatψ(x, k) andφ(x, k) are able to analytically continue into the region
Imλ > 0, that is the upper half plane of complexk, by (5). Hence,a(k) can be analytically
continued into the upper half plane of complexk. Analogously,ψ̃(x, k) and φ̃(x, k) go
analytically into the region Imλ < 0, the lower half plane of complexk. In the complex
plane, we also have

ψ̃(x, k) = iσ2ψ(x, k) φ̃(x, k) = −iσ2φ(x, k). (14)
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4. The reduction transformation properties

From (5) and (3) one can see thatL(−k̄) = L(k). So we obtain

ψ(x, k) = ψ(x,−k̄) φ(x, k) = φ(x,−k̄) a(−k̄) = a(k) (15)

and

b(−k) = b(k) wherek is real. (16)

The properties of the Jost solutions,a(k) andb(k), under the transformationk → −k̄ are
referred to as the reduction transformation properties.

From (15) we can see that ifkn is a zero ofa(k), then−k̄n is also a zero ofa(k).
Therefore, zeros ofa(k) exist in pairs. Sometimes, we write

kn̄ = −k̄n or kN+n = −k̄n. (17)

If kn is a zero ofa(k), from (13) we have

φ(x, kn) = bnψ(x, kn) (18)

wherebn is independent ofx. Similarly, we have

φ(x, kn̄) = bn̄ψ(x, kn̄) bn̄ = b̄n. (19)

From (15) we have

cn = −c̄n̄ n = 1, 2, . . . , N (20)

where

cn = bn

ȧ(kn)
ȧ(kn) = d

dk
a(k)k=kn n = 1, 2, . . . ,2N. (21)

The standard procedure then yields

a(k) =
N∏
n=1

k − kn
k − k̄n

k + k̄n
k + kn exp

{
1

2π i

∫ ∞
−∞

dk′
ln (1− |b(k′)|2)

k′ − k
}
. (22)

5. An inverse scattering transform

Similar to that of the inverse scattering transform for the NLS equation developed in the well
known paper of Zakharov and Shabat [19], one can obtain an inverse scattering equation of
Zakharov–Shabat form

ψ̃(x, k) = D·1(x, k)e−iλx (23)

where

D·1(x, k) ≡
(

1
0

)
+ R·1(x, k)+ J·1(x, k) (24)

R·1(x, k) =
2N∑
n=1

1

k − kn
bn

ȧ(kn)
ψ(x, kn) eiλnx (25)

and

J·1(x, k) = 1

2π i

∫ ∞
−∞

dk′
1

k′ − k
b(k′)
a(k′)

ψ(x, k′) eiλ′x. (26)

Similarly, we obtain

φ̃(x, k) = D·2(x, k)eiλx (27)
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where

D·2(x, k) ≡
(

0
1

)
+ R·2(x, k)+ J·2(x, k) (28)

R·2(x, k) =
2N∑
n=1

1

k − kn
1

ȧ(kn)
ψ(x, kn) e−iλnx (29)

and

J·2(x, k) = 1

2π i

∫ ∞
−∞

dk′
1

k′ − k
b(k)

a(k′)
φ(x, k′) e−iλ′x. (30)

Although the resulting expression ofM(x, k) transformed by the gauge transformation
K(x) is more complicated, its asymptotic expression in the limit of|x| → ∞ is simply
i2λµσ3. By standard procedure, the time dependence is simply achieved by the following
replacements:

a(k)→ a(t, k) = a(0) (31)

b(k)→ b(t, k) = b(0, k)ei4λµt (32)

and

bn→ bn(t) = bn(0) ei4λnµnt (33)

wherea(0, k), etc, are constants.

6. Determination of the gauge transformation

We now determine expression of the gauge transformation. Writing

F(x, k) = K(x)(ψ̃(x, k)φ̃(x, k)) (34)

and substituting it into (6), we have

∂x{K(x)D(x, k)e−iλxσ3} = L(x, k){K(x)D(x, k)e−iλxσ3}. (35)

In the limit of |k| → ∞, we obtain

∂xK(x) = i2ρS2(x)σ2K(x). (36)

In the limit of |k| → 0, we have

∂x{K(x)D(x, 0)} = −i2ρS2(x)σ2{K(x)D(x, 0)}. (37)

Comparing these two equations, we find

K−1(x) = K(x)D(x, 0) (38)

or

D(x, 0) = K−2(x) = K(x)†2 (39)

K(x)2 = D(x, 0)†. (40)

From (10), we have

K(x)2 = ei 1
2 2�(x)σ2 = cos{�(x)} + iσ2 sin{�(x)} (41)

whose elements are real and the determinant is unity. This means that

D(x, 0)jk is real j, k = 1, 2 (42)

D(x, 0)11 = D(x, 0)22 D(x, 0)21 = −D(x, 0)12 (43)
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and

detD(x, 0) = 1. (44)

However, only (42) is essential, (43) and (44) are naturally true in the case of (42).
We now determine the original spin, namely, the spin without the gauge transformation.

Taking the limit ofk→ 1, from (35) we obtain

(S · σ) = G(x, 1)σ3G(x, 1)−1 = G(x, 1)σ3G(x, 1)† (45)

where

G(x, k) = K(x)D(x, k). (46)

(45) can be explicitly written as

(S1)3 = D1(0)11{D1(1)11D1(1)11−D1(1)21D1(1)21} +D1(0)21{D1(1)11D1(1)21

+D1(1)11D1(1)21} (47)

(S1)1 = D1(0)11{D1(1)11D1(1)21+D1(1)11D1(1)21} −D1(0)21{D1(1)11D1(1)11

−D1(1)21D1(1)21} (48)

(S1)2 = −i{D1(1)11D1(1)21−D1(1)11D1(1)21}. (49)

We have seen that the second component ofS is unaffected by the gauge transformation.

7. A system of linear algebraic equations

In the reflectionless case, settingk = k̄m, from (23) we have

ψ2(x, km) = e−iλ̄mx +
2N∑
n=1

1

k̄m − kn
cnψ1(x, kn) ei(λn−λ̄m)x (50)

and

−ψ1(x, km) =
2N∑
n=1

1

km − k̄n
c̄nψ2(x, kn) e−i(λ̄n−λm)x . (51)

These equations are similar to those of the MKdV equation relating toN breather solutions,
so we can solve it explicitly by a well considered procedure [18]. From (24) we have

D(x, 1)11 = 1+
2N∑
n=1

1

1− kn cnψ1(x, kn) eiλnx (52)

and

D(x, 1)21 =
2N∑
n=1

1

1− kn cnψ2(x, kn) eiλnx. (53)

Defining

hn = b
1
2
n eiλnx (54)

fn = ȧ(kn)− 1
2hn = c

1
2
n eiλnx (55)

9jn = c
1
2
n ψj (λn) (56)

Qnm = f̄n 1

k̄n − km
fm (57)
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(50) and (51) can be written in matrix form as

91 = 92Q 92 = f̄ +91Q
T. (58)

Hence, we have

92 = f̄ (I −QQT)−1 91 = f̄ (I −QQT)−1Q. (59)

For realk0, we write

D(x, k0)11 = 1−
2N∑
n=1

91ngn(k0) = 1−91g(k0)
T (60)

D(x, k0)21 = −
2N∑
n=1

92nḡ(k0)n = −92ḡ(k0)
T (61)

wheregn(k0) = (1/(kn − k0))fn.
With (59), we obtain

D(x, k0)21 = −f̄ (I −QQT)−1ḡ(k0)
T = det(I −QQT − ḡ(k0)

Tf̄ )

det(I −QQT)
− 1. (62)

D(x, k0)11 = 1− f̄ (I −QQT)−1Qg(k0)
T =

(
det(I −QQT −Qg(k0)

Tf̄ )

det(I −QQT)

)
. (63)

Finally, settingk0 = 1, we obtain the expressions forD(x, 1) as needed in (45), etc.

8. Explicit expressions in the case ofN

We write

D(x, k0)11 = A(k0)N

CN
D(x, k0)21 =

B(k0)N

CN
. (64)

These formulae can be calculated by using the known Binet–Cauchy formula (see Appendix
for details). The procedure is the same as that leading to the explicit expressions for multi-
soliton solutions of the NLS equation and the MNLS equation. We have

CN = det(I −QQT) = 1+
2N∑
r=1

(−1)r

×
∑

16n1<n2<···<nr62N

∑
16m1<m2<···<mr62N

C(n1, n2, . . . , nr;m1, m2, . . . , mr) (65)

C(n1, n2, . . . , nr;m1, m2, . . . , mr) =
∏
n

∏
m

f̄ 2
n f

2
m(k̄n − km)−2

×
∏
n<n′

∏
m<m′

(k̄n − k̄n′)2(km′ − km)2 (66)

wheren, n′, m, m′ satisfyn, n′ ∈ {n1, n2, . . . , n7}, m,m′ ∈ {m1, m2, . . . , m7}.
Similarly, we write

BN(k0) = det(I −QQT − ḡ(k0)
Tf̄ )− det(I −QQT)

=
2N∑
r=1

(−1)r
∑

16n1<n2<···<nr62N

∑
16m2<···<mr62N

B(n1, n2, . . . , nr; 0, m2, . . . , mr)

(67)

B(n1, n2 . . . , nr; 0, m2, . . . , mr)

=
∏
n

∏
m

k0− km
k̄n − k0

f̄ 2
n f

2
m(k̄n − k̄m)−2

∏
n<n′

∏
m<m′

(k̄n − k̄n′)2(km′ − km)2 (68)
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but wheren, n′, m, m′ satisfyn, n′ ∈ {n1, n2, . . . , nr}, m,m′ ∈ {m2, . . . , mr}.
We also write

AN(k0) = det(I −QQT −Qg(k0)
Tf̄ )

= 1+
2N∑
r=1

(−1)r

×
∑

16n1<n2<···<nr62N

∑
16m1<m2<···<mr62N

A(n1, n2, . . . , nr;m1, m2, . . . , mr) (69)

A(n1, n2, . . . , nr;m1, m2, . . . , mr)

=
∏
n

∏
m

k0− k̄n
k0− km f̄

2
n f

2
m(k̄n − km)−2

∏
n<n′

∏
m<m′

(k̄n − k̄n′)2(km′ − km)2

(70)

wheren, n′, m, m′ also satisfyn, n′ ∈ {n1, n2, . . . , nr}, m,m′ ∈ {m1, m2, . . . , mr}.
From (20), (35) and (43), we have

C(ň1, ň2, . . . , ňr; m̌1, m̌2, . . . , m̌r ) = c(n1, n2, . . . , nr;m1, m2, . . . , mr) (71)

henceCN is real. Similarly,BN(0) andAN(0) are real. (42) is valid.

9. An explicit expression of the 1-soliton solution

WhenN = 1, we obtain expressions of the original spin,

(S1)3 = 1− 2

(
4k′′21

|1− k2
1|2
+ k

′′2
1

k
′2
1

sin281

)(
cosh221+ k

′′2
1

k
′2
1

sin281

)−1

(72)

(S1)1 =
(

2
4k′′21

|1− k2
1|2

sinh21 cos81− 2
k′′1
k′1

1− |k1|4
|1− k2

1|2
cosh21 sin81

)
×
(

cosh221+ k
′′2
1

k′21
sin281

)−1

(73)

(S1)2 =
(

2
2k′′1(1− |k1|2)
|1− k2

1|2
cosh21 cos81+ 2

2k′′21 (1+ |k1|2)
k′1|1− k2

1|2
sinh21 sin81

)
×
(

cosh221+ k
′′2
1

k
′2
1

sin281

)−1

(74)

where

81 = 2λ′1x − 2(λ′1µ
′
1− λ′′1µ′′ − n)t +810 (75)

21 = 2λ′′1(x − V1t − x1) V1 = µ′1+
λ′1
λ′′1
µ′′1 (76)

and810 andx1 are real constants.
The expressions of the 1-soliton solution for a spin chain with an easy plane (the 31-

plane and the asymptotic spin along the 3-axis) are equivalent to those found recently by
the method of the Darboux transformation [13] but they have not been found previously by
any means.

These expressions depend essentially on two parameters, namely, the two velocities
in (75) and (76), which describe a spin configuration, deviating from homogeneous
magnetization. The centre of inhomogeneity moves with a constant velocity, while the
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shape of the soliton (the direction of magnetization in its centre) also changes with another
velocity. The expressions cannot be obviously factorized in forms of separated variables,
even in moving coordinates. Hence, it is hopeless to solve the L–L equation for a spin chain
with an easy plane by means of separation of variables. Moreover, these properties remain
even in the approximation of orderρ2; all attempts to use this approximation failed. It is
obvious that, whenρ → 0, these three expressions recover those for the isotropic chain.

Some years ago, in the work of Nakamura and Sasada [7], gauge equivalence of the
spin chain with an easy plane to the NLS equation with a repulsive interaction in the case
of a non-vanishing boundary value was indicated. As is shown in this work, multi-soliton
solutions of the L–L equation for a spin chain with an easy plane tend to those for the
isotropic spin chain as anisotropy vanishes. On the other hand, the NLS equation with a
repulsive interaction in the case of non-vanishing boundary value has dark soliton solutions;
when the boundary value tends to zero, the equation has no non-trivial solutions except zero.
Hence, the gauge equivalence between these two equations cannot exist.

Since we have obtained (67) and (69), by using standard procedure, we can find the
asymptotic behaviours of theN -soliton solution simply.

10. Concluding remark

For the L–L equation for a continuous spin chain with an easy plane, exact soliton solutions
have never been found in the last 20 years by all means tried. An exact single soliton
solution with spin non-flip was first given in a previous note [13]. The present work gives
a suitable inverse scattering transform, the multi-soliton solutions formally and an explicit
expression of the 1-soliton solution. The present work provides a solid basis for further
research.
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Appendix. Explicit expressions ofD(x,k0)

Neglectingk0 for simplicity, we write

D21 = det(I + R′)
det(I + R) − 1 (A.1)

whereR = −QQT, R′ = R − ḡTf̄ .
det(I + R) can be expanded as

det(I + R) = 1+
2N∑
r=1

∑
16n1<n2<···<nr62N

R(n1, n2, . . . , nr) (A.2)

where R(n1, n2, . . . , nr) is a principal minor, that is a determinant of a submatrix of
R, by crossing off the other columns and rows with the(n1, n2, . . . , nr)th columns and
(n1, n2, . . . , nr)th rows remaining. By means of the Binet–Cauchy formula, we have

R(n1, n2, . . . , nr) = (−1)r
∑

16m1<m2<···<mr62N

Q(n1, n2, . . . , nr;m1, m2, . . . , mr)
2. (A.3)
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On account of the special form ofQmn, (57), we have

Q(n1, n2, . . . , nr;m1, m2, . . . , mr) =
∏
n

∏
m

f̄nfm(k̄n − km)−1
∏
n<n′

∏
m<m′

(k̄n − k̄n′)(km′ − km)

(A.4)

wheren, n′ ∈ {n1, n2, . . . , nr}, m,m′ ∈ {m1, m2, . . . , mr}.
To evaluate det(I +R′), we writeR′ = −Q′Q′′T, whereQ′ is a 2N × (2N + 1) matrix

whose elements are

Q′n0 = ḡn Q′′n0 = f̄n n = 1, 2, . . . ,2N (A.5)

Q′nm = Qnm n,m = 1, 2, . . . ,2N. (A.6)

By means of the Binet–Cauchy formula, we have

R′(n1, n2, . . . , nr) = (−1)r
∑

06m1<m2<···<mr62N

Q′(n1, n2, . . . , nr;m1, m2, . . . , mr)

×Q′′(n1, n2, . . . , nr;m1, m2, . . . , mr). (A.7)

The summation on the right-hand side is obviously decomposed into two parts: one of
m1 = 0 and one ofm1 > 1. The second part is justR(n1, n2, . . . , nr). Hence, we obtain

det(I + R′)− det(I + R) =
2N∑
r=1

(−1)r

×
∑

16n1<n2<···<nr62N

∑
16m2<···<mr62N

Q′(n1, n2, . . . , nr; 0, m2, . . . , mr)

×Q′′(n1, n2, . . . , nr; 0, m2, . . . , mr). (A.8)

By means of the similar procedure, we find

Q′′(n1, n2, . . . , nr; 0, m2, . . . , mr) =
∏
n

∏
m

f̄nfm(k̄n − km)−1

×
∏
n<n′

∏
m<m′

(k̄n − k̄n′)(km′ − km) (A.9)

Q′(n1, n2, . . . , nr; 0, m2, . . . , mr) =
∏
n

∏
m

(k0− km)
k̄n − k0

f̄nfm(k̄n − km)−1

×
∏
n<n′

∏
m<m′

(k̄n − k̄n′)(km′ − km) (A.10)

wheren, n′ ∈ {n1, n2, . . . , nr}, m,m′ ∈ {m2, . . . , mr}.
Hence, we have obtained the explicit expressions ofD(x, k0)21.
Equation (63) can be simply written as

D11 = det(I −QQ′′′T)
det(I −QQT)

(A.11)

where

Q′′′ = Q+ f̄ Tg or Q′′′nm = f̄n
{

1

k̄n − km
k0− k̄n
k0− km

}
fm. (A.12)

A similar procedure yields

Q′′′(n1, n2, . . . , nr;m1, m2, . . . , mr) =
∏
n

∏
m

k0− k̄n
k0− km f̄nfm(k̄n − km)

−1

×
∏
n<n′

∏
m<m′

(k̄n − k̄n′)(km′ − km). (A.13)
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